Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
Q DP problem:
The TRS P consists of the following rules:
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(u, v)
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(w, z)
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(u, v)
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(w, z)
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)
Used argument filtering: CONCAT2(x1, x2) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))
The TRS R consists of the following rules:
concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))
The set Q consists of the following terms:
concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.